I have found (Tang, 1950) that the data for this phase, which covers the composition range $63-88 \%$ of platinum, are compatible with a cubic structure of the type $A B C_{6}$ with

$$
\begin{aligned}
& A \text { at }\left(0,0,0 ; 0, \frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0\right)+0,0,0 ; \\
& B \text { at }+\frac{1}{2}, 0,0 ;
\end{aligned}
$$

and C at $+\frac{1}{4}, \frac{1}{4}, 0 ;+0, \frac{1}{4}, \frac{1}{4} ;+\frac{1}{4}, 0, \frac{1}{4} ;+\frac{1}{4}, \frac{1}{4}, \frac{1}{2} ;$

$$
+\frac{1}{2}, \frac{1}{4}, \frac{1}{4} ;+\frac{1}{4}, \frac{1}{2}, \frac{1}{4},
$$

as shown in Fig. 1. The structure factors for the three types of unmixed $h k l$ are:
$F_{h k l}=4\left(f_{A}+f_{B}+6 f_{c}\right)$, if $h k l$ are all multiples of 4 , or all even but not divisible by 4 ;
$F_{h k l}=4\left(f_{A}+f_{B}-2 f_{c}\right)$, if $h k l$ are all even and only one or two of them are divisible by 4 ;
$F_{h k l}=4\left(f_{A}-f_{B}\right)$, if $h k l$ are all odd.

Fig. 1. The cubic structure $A B C_{0} . \quad Z=4$.
For the alloy containing $\mathbf{7 2 . 5} \%$ of platinum A is Pt , B is Cu and C is the statistical atom ($\mathrm{Pt}_{0.8} \mathrm{Cu}_{0 \cdot 2}$). The cubic structure $\mathrm{PtCu}\left(\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}\right)_{6}$ gives at least as good agreement with X-ray intensities as Schneider \& Esch's structure. The calculated intensities and those observed by Schneider \& Esch are given in Table 1.

It is not particularly surprising that the alloy in ques. tion, which corresponds to a maximum in the electric-conductivity-composition curve and which gave maximum intensities to superstructure lines (Schneider \& Esch, 1944) contains the statistical atom $\left(\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}\right)$. As a matter of fact it is the composition ($\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}$) Cu_{3} in the cubic phase of nominal composition PtCu_{3} which corresponds to a high peak in the conductivity diagram and also gives maximum intensities to superstructure lines (Schneider \& Esch, 1944; Johansson \& Linde, 1927). The statistical atom ($\mathrm{Pt}_{0.8} \mathrm{Cut}_{0.2}$) may involve some shortrange order which is not detectable by ordinary X-ray diffraction methods.

The complex conductivity and X-ray data for the other alloys between 63 and 88% of platinum in the cubic phase of nominal composition PtCuPt_{6} are understandable in terins of cubic structures as described by the formula

$$
\left(\mathrm{Pt}_{1-2} \mathrm{Cu}_{x}\right)\left(\mathrm{Pt}_{y} \mathrm{Cu}_{1-y}\right)\left(\mathrm{Pt}_{1-z} \mathrm{Cu}_{z}\right)_{6}
$$

where x, y and z are less than $0 \cdot 3$, and $100(7-x+y-6 z) / 8$ is the atomic percentage of platinum in an alloy.

Table 1. Calculated and observed intensities for

$$
\mathrm{PtCu}\left(\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}\right)_{6}
$$

hkl	$\sin \theta$	$P L H F^{2} \times 10^{-6}$	I
111	(0.173)	9	-
200	(0.200)	2	-
220	$0 \cdot 284$	2	vvw
311	$0 \cdot 335$	11	$v w$
222	$0 \cdot 347$	350	$m s$
400	$0 \cdot 402$	200	$m v$
331, 402	$0 \cdot 441$	11	$v w$
224	(0.510)	2	-
333, 511	$0 \cdot 528$	8	$v w$
440	$0 \cdot 565$	250	s
531	$0 \cdot 592$	10	$v w$
600, 442	(0.600)	2	-
6: 0	(0.632)	2	-
33:	0.653	5	vere
6:2	$0 \cdot 163$	410	vs
444	$0 \cdot 691$	135	m.
5\%1, 711	0.713	10	$v w$
406	(0.720)	2	-
624	0.749	4	vvx
731, 5.53	0.768	15	vnv
SOO	0.798	113	$m w$
733	$0 \cdot 818$	6	$v w$
S02, 446	0.830	5	vere:
228, 660	$0 \cdot 845$	3	vvw
555, 157	$0 \cdot 864$	16	u
662	$0 \cdot 870$	626	vs
840	0.893	680	$v s$
911, 735	$0 \cdot 910$	28	w
842	(0.917)	7	-
664	(0.938)	4	-
913	$0.95:$	29	$v w$
844	0.978	2110	vs

$P=$ polarization factor; $L=$ Lorentz factor; $H=$ multiplicity factor. $m=$ moderate; $s=$ strong; $v=$ very; $w=$ weak.

In view of the fact that there is no detectable splitting of the cubic lines and of the satisfactory agreement with X-ray intensities given by the cubic structure $\mathrm{PtCu}\left(\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}\right)_{6}$, this structure is probably the correct one for the annealed $\mathrm{Pt}-\mathrm{Cu}$ alloy containing 72.5% of platinum, and the cubic phase covering the entire range of $63-88 \%$ of platinum is probably similarly based upon the cubic structure $A B C_{6}$.

I wish to thank Prof. Linus Pauling for suggesting this problem to me, and for many helpful discussions.

References

Johansson, C. H. \& Linde, J. O. (1927). Ann. Phys., $L p z ., 82,459$.
Schneider, A. \& Esch, U. (1944). Z. Elektrochem. 50, 290.

Tang, You-Chi (1950). Ph.D. Thesis, California Institute of Technology.

Acta Cryst. (1951). 4, 378
Structure studies of the two forms of sodium tripolyphosphate. By J. J. Dymon and A. J. King, Department of Chemistry, Syracuse University, Syracuse 10, New York, U.S.A.
(Received 8 March 1951)

Sodium tripolyphosphate, $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$, is the only crystalline polyphosphate which has been observed as an inter-
mediate phase in the binary system $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}-\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$. Its existence has been substantiated by a number of
investigators (Andress \& Wüst, 1938, 1939; Partridge, Hicks \& Smith, 1941; Ingerson \& Morey, 1943; Morey \& Ingerson, 1941) using thermal, microscopic, X-ray diffraction and molecular-weight-determination methods. The phase diagram (Partridge et al. 1941; Morey \& Ingerson, 1941) shows that it melts incongruently at $620-622^{\circ} \mathrm{C}$. to form a liquid phase and crystalline sodium pyrophosphate, $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$. Over the range of compositions between 33 and $48 \% \quad \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, crystalline $\quad \mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ separates as the primary phase. It exists in two crystalline forms, as demonstrated by powder diffraction patterns (Partridge et al. 1941) and by measurements of the optical properties (Ingerson \& Morey, 1943).

In the present investigation small crystals of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}(\mathrm{I})$ were obtained by cooling the melt (of composition corresponding to $45 \% \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, 55 \% \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$) from 640 to $565^{\circ} \mathrm{C}$. at a rate of $2^{\circ} \mathrm{C}$./hr., finally quenching in a bath of dry ice and acetone. If, however, the cooling of the melt was continued to $500^{\circ} \mathrm{C}$. before quenching, single crystals of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}(\mathrm{II})$ could be isolated from the partially powdered mass. Simulated powder patterns were produced from these single crystals in a manner which did not destroy them for further study by single-crystal methods. The powder patterns so obtained verified the identity of the two forms as previously reported.

X-ray data were obtained by Weissenberg and oscillation methods. $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}(\mathrm{I})$ is monoclinic with

$$
\begin{gathered}
a=9.73 \pm 0.02, \quad b=5.41 \pm 0.02, \quad c=19.97 \pm 0.02 \mathrm{~A} . \\
\beta=112^{\circ} 12^{\prime} .
\end{gathered}
$$

The density determined by the flotation method is 2.52 g.cm. ${ }^{-3}$ (calculated $2.51 \mathrm{~g} . \mathrm{cm} .^{-3}$), hence the cell contains four molecules. Reflections were systematically absent for ($h k l$) with ($h+k$) odd, ($h 0 l$) with h and l odd, ($0 k 0$) with k odd. The space group therefore is either $C 2 / c$ or $C c$. Samples tested by Dr R. G. Stokes of the Naval Research Laboratory, Washington, D.C., failed to show measurable piezoelectric activity, thus making it impossible to decide with certainty between these two space groups.
$\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}(\mathrm{II})$ is also monoclinic with

$$
\begin{gathered}
a=16.08 \pm 0.02, \quad b=5 \cdot 24 \pm 0.02, \quad c=11 \cdot 28 \pm 0.02 \mathrm{~A} . \\
\beta=93^{\circ} 30^{\prime} .
\end{gathered}
$$

The density, found to be $2.59 \mathrm{~g} . \mathrm{cm} .^{-3}$ (calculated $2.58 \mathrm{~g} . \mathrm{cm} .{ }^{-3}$), requires four molecules in the cell. No reflections were observed for ($h k l$) with ($h+k$) odd, ($h 0 l$) with h and l odd, and ($0 k 0$) with k odd. The space group could therefore be either $C 2 / c$ or $C c$, but since no piezoelectric effect could be detected, again, no decision could be made between them.

The space group $C 2 / c$ provides eight general equivalent positions. Since the cells of both forms of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ contain only four molecules it would be necessary for the $\mathrm{P}_{3} \mathrm{O}_{10}^{-5}$ ion to possess either a center or a twofold axis of symmetry in order to be compatible with this space group. Although it is impossible for three PO_{4} tetrahedra to combine to form an ion with a center of symmetry, several arrangements exhibit twofold symmetry. These ions could lie in the set of special positions (Internationale Tabellen (1935), vol. 1, p. 101) at (e) which has twofold symmetry.

Preliminary studies indicate that both forms crystallize in $C 2 / c$ and consist of open chains of three PO_{4} tetrahedra linked by single oxygen bridges. The ion in each form probably lies at $0, y, \frac{1}{4} ; 0, \bar{y}, \frac{3}{4} ; \frac{1}{2}, \frac{1}{2}+y, \frac{1}{4} ; \frac{1}{2}, \frac{1}{2}-y, \frac{3}{4}$.
A complete study of these structures is now in progress.

This investigation was made possible through a fellowship grant by The Procter and Gamble Company, Ivorydale, Ohio, U.S.A.

References

Andress, K. R. \& Wüst, K. (1938). Z. anorg. Chem. 237, 113.

Andress, K. R. \& Wüst, K. (1939). Z. anorg. Chem. 241, 196.

Ingerson, E. \& Morey, G. W. (1943). Amer. Min. 28, 448.

Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Bornträger.
Morey, G. W. \& Ingerson, E. (1941). Amer. J. Sci. 242, 1.
Partridge, E. P., Hicks, V. \& Smith, G. W. (1941). J. Amer. Chem. Soc. 63, 454.

Acta Cryst. (1951). 4, 379

Note on the crystalline structures of the methyl cyanide-boron trihalides. By S. Geller* and O. N. Salmon \dagger, Baker Laboratory of Chemistry, Cornell University, Ithaca, N.Y., U.S.A.

(Received 26 January 1951)

Crystals of $\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BCl}_{3}$ and $\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BBr}_{3}$ grown in glass capillaries as described in the paper on $\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BF}_{3}$ (Hoard, Owen, Buzzell \& Salmon, 1950) were photographed with $\mathrm{Cu} K \alpha$ radiation. The orthorhombic unit cells all give vanishings characteristic of the space groups

[^0]$D_{2 h}^{16}-P n m a$ and $C_{2 v}^{9}-P n a$. The lattice constants obtained are:

	$a($ A. $)$	b (A.)	c (A.)
$\mathrm{H}_{3} \mathrm{CCN}^{2}-\mathrm{BF}_{3}$	7.76	7.20	8.34
$\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BCl}_{3}$	8.72	7.30	10.20
$\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BBr}_{3}$	8.91	7.51	10.94

The pyenometric densities of $\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BF}_{3}$ and $\mathrm{H}_{3} \mathrm{CCN}_{3}-\mathrm{BCl}_{3}$ are very nearly the same (Laubengayer \& Sears, 1945), and there are four molecules in each of the unit cells. As far as can be ascertained $\mathrm{H}_{3} \mathrm{CCN}-\mathrm{BBr}_{3}$ has not been reported elsewhere in the literature and the

[^0]: * Present address: E. I. duPont de Nemours and Co., Rayon Department, Acetate Research, Waynesboro, Virginia, U.S.A.
 \dagger Present address: General Electric Research Laboratory, Schenectady, N.Y., U.S.A.

